
Markov Chains

Notes made by Finley Cooper

14th October 2025

1



Contents

1 Markov Chains 3
1.1 The Markov property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Powers of the transition matrix 5

2



1 Markov Chains

1.1 The Markov property

Throughout all our random variables and random processes will be assumed to be defined on an
appropiate underlying probablity space (Ω,F ,P).

Definition. (Markov chain) A discrete-time Markov chain is a sequence X = (Xn)n≥0

of random variables taking values in the same discrete countable state space I, such that:

P (Xn+1 = xn+1|X0 = x0, . . . , Xn = xn) = P (Xn+1 = xn+1|Xn = xn) ∀n ≥ 0.

If P (Xn+1 = y|Xn = x) is indepedent of n for all x, y then we call X a time-homogeneous Markov
chain. For this course all Markov chains are time-homogeneous with a countable state space.

Definition. (Transition matrix) We define the transition matrix P as the matrix

P (x, y) = Pxy = P (Xn+1 = y|Xn = x) .

Note that P is a stochastic matrix i.e. Pxy ≥ 0 for all x, y and the sum of each row is 1. For
example take the simple Markov chain with I = {0, 1} moving from 0 to 1 w.p. α and moving
from 1 to 0 w.p. β, so

P =

(
1− α α
β 1− β

)
We say that X = (Xn) is a Markov chain with transition matrix P with initial distribution λ if
λ = (λn) is a distribution and I is such that P (X0 = x) = λi, for all x ∈ I, P is the transition
matrix of X i.e.

P (Xn+1 = y|Xn = x,Xn−1 = in−1, . . . , X0 = i0) = Pxy

for all i0, . . . , in−1 ∈ I. Then X ∼ Markov(λ, P )

Theorem. X = (Xn) is Markov(λ, P ) on I if and only if

P (X0 = x0, X1 = x1, . . . , Xn = xn) = λx0px0x1 , . . . pxn−1xn

for all n ≥ 0 and all x0, x1, . . . , xn ∈ I.

Proof. First let’s prove the forward direction. Suppose that X is Markov. Then

P (X0 = x0, X1 = x1, . . . , Xn = xn) = P (X0 = x0, . . . , Xn−1 = xn−1)P (Xn = xn|Xn−1 = xn−1 . . . , X0 = x0)

which iterating over n gives that

= P (X0 = x0)Px0x1
. . . Pxn−1xn

proving the foward direction. For the converse

P (Xn = xn|Xn−1 = xn−1, . . . , X0 = x0)

=
P (X0 = x0, . . . , Xn = xn)

P (X0 = x0, . . . , Xn−1 = xn−1)
=

λx0
Px0x1

. . .

λx0Px0x1 . . .
= Pxn−1xn
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and with n = 0 we get our P (X0 = x0)) = λx0

Definition. For i ∈ I the δi-mass at i denotes the probability mass function at i

δij =

{
1 j = i

0 j ̸= 1

Recall that form a finite collection of random variables (X0, . . . , Xn) are indepedent if and only
if

P (X0 = x0, . . . , Xn = xn)) =

n∏
i=0

P (Xi = xi)

for all x0, . . . , xn ∈ I.

A process (Xn) consistant of indepedent RVS ifand only if for any collection of indices {t1, . . . , tk}
in N we have that

P (Xt1 = xt1 , . . . , Xtk = xtk) =

k∏
i=1

P (Xti = xti)

The process (Xi) is indepedent from the process (Yi) iff for any {t1, t2, . . . , tk} and {s1, . . . , sm}
for any k,m ≥ N we have that

P (Xt1 = xt1 , · · · , Ys1 = ys1 , · · ·) = P (Xt1 = xt1 , · · ·)P (Ys1 = ys1 , · · ·)

Note that for a Markov chain X it is always the case that Xn+1 is conditional independent of
Xn−1 given Xn. But typically Xn+1 is not indepedent of Xn−1. Let’s see an example of this.

If (Xn) are IID then X = (Xn) is a Markov chain. What is λ and P .

Theorem. (Markov property) If X ∼ Markov(λ, P ). Then for any m ≥ 1 and i ∈
I conditional on Xm = i the process (Xm+n) is Markov(δi, P ) and it is indepdent of
X0, . . . , Xm.

Proof. Clearly, P (Xm = j|Xm = i) = δij ,

P (Xm+n = xm+n|Xm = xm . . . , Xm+n−1 = xm+n−1)

= P (Xm+n = xm+n|Xm+n−1 = xm+n−1) = Pxm+n−1xmn

so we have that (Xm+n) is Markov(δi, P ).

Now to show independence, is just an application of the law of total probability and is a lot and
lot of indices.
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2 Powers of the transition matrix

Suppose that X ∼ Markov(λ, P ). Where is P (Xn = xn) for large n?

P (Xn = x) =
∑

x0,...,xn−1

P (X0 = x0, . . . , Xn = xn)

=
∑

x0,...,xn−1

λx0Px0x1 . . . Pxn−1xn

= (λPn)xn

So to understand the long time distribution of X it suffices understand the behaviour of Pn for
stochastic matrices. Recall that P is stochastic if Pxy ≥ 0 and each row is a PMF.

Theorem. Suppose that X ∼ Markov(λ, P ). Then
(i) P (Xn = x) = (λPn)x for all x ∈ I, n ≥ 1.
(ii) P (Xn+m = y|Xm = x) = (δxP

n)y = (Pn)xy.

Proof. We’ve proved the first part, let’s prove the second statement. Let (Xn+m) be Markov with
initial distribution δm conditional on Xm = x. So by the first statement

P (Xm+n = y|Xn = x) = (δxP
n)y = (Pn)xy
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